Monday, May 21, 2018

Physics around you: the field-effect transistor

While dark matter and quantum gravity routinely get enormous play in the media, you are surrounded every day by physics that enables near miraculous technology.  Paramount among these is the field-effect transistor (FET).   That wikipedia link is actually pretty good, btw.  While I've written before about specific issues regarding FETs (here, here, here), I hadn't said much about the general device.

The idea of the FET is to use a third electrode, a gate, to control the flow of current through a channel between two other electrodes, the source and drain.  The electric field from the gate controls the mobile charge in the channel - this is the field effect.   You can imagine doing this in vacuum, with a hot filament to be a source of electrons, a second electrode (at a positive voltage relative to the source) to collect the electrons, and an intervening grid as the gate.  Implementing this in the solid state was proposed more than once (LilienfeldHeil) before it was done successfully. 

Where is the physics?  There is a ton of physics involved in how these systems actually work.  For example, it's all well and good to talk about "free" electrons moving around in solids in analogy to electrons flying in space in a vacuum tube, but it's far from obvious that you should be able to do this.   Solids are built out of atoms and are inherently quantum mechanical, with particular allowed energies and electronic states picked out by quantum mechanics and symmetries.  The fact that allowed electronic states in periodic solids ("Bloch waves") resemble "free" electron states (plane waves, in the quantum context) is very deep and comes from the underlying symmetry of the material.  [Note that you can have transistors even when the charge carriers should be treated as hopping from site to site - that's how many organic FETs work.]  It's the Pauli principle that allows us to worry only about the highest energy electronic states and not have to worry about, e.g., the electrons deep down in the ion cores of the atoms in the material.  Still, you do have to make sure there aren't a bunch of electronic states at energies where you don't want them - these the are traps and surface states that made FETs hard to get working.  The combo of the Pauli principle and electrostatic screening is why we can largely ignore the electron-electron repulsion in the materials, but still use the gate electrode's electric field to affect the channel.  FETs have also been great tools for learning new physics, as in the quantum Hall effect

What's the big deal?  When you have a switch that is either open or closed, it's easy to realize that you can do binary-based computing with a bunch of them.  The integrated manufacturing of the FET has changed the world.  It's one of the few examples of a truly disruptive technology in the last 100 years.  The device you're using to read this probably contains several billion (!) transistors, and they pretty much all work, for years at a time.  FETs are the underlying technology for both regular and flash memory.  FETs are what drive the pixels in the flat panel display you're viewing.  Truly, they are so ubiquitous that they've become invisible.

Wednesday, May 16, 2018

"Active learning" or "research-based teaching" in upper level courses

This past spring Carl Wieman came to Rice's Center for Teaching Excellence, to give us this talk, about improving science pedadogy.  (This video shows a very similar talk given at UC Riverside.) He is very passionate about this, and argues strongly that making teaching more of an active, inquiry-based or research-question-based experience is generally a big improvement over traditional lecture.  I've written previously that I think this is a complicated issue. 

Does anyone in my readership have experience applying this approach to upper-level courses?  For a specific question relevant to my own teaching, have any of you taught or taken a statistical physics course presented in this mode?  I gather that PHYS 403 at UBC and PHYS 170 at Stanford have been done this way.  I'd be interested in learning about how that was implemented and how it worked - please feel free to post in comments or email me.

(Now that the semester is over and some of my reviewing responsibilities are more under control, the frequency of posting should go back up.)

Wednesday, May 02, 2018

Short items

A couple of points of interest:
  • Bill Gates apparently turned down an offer from the Trump administration to be presidential science advisor.  It's unclear if this was a serious offer or an off-hand remark.   Either way it underscores what a trivialized and minimal role OSTP appears to be playing in the present administration.  It's a fact of modern existence that there are many intersections between public policy and the need for technical understanding of scientific issues (in the broad sense that includes engineering).   While an engaged and highly functional OSTP doesn't guarantee good policy (because science is only one of many factors that drive decision-making), the US is doing itself a disservice by running a skeleton crew in that office.  
  • Phil Anderson has posted a document (not a paper submitted for publication anywhere, but more of an essay) on the arxiv with the sombre title, "Four last conjectures".  These concern: (1) the true ground state of solids made of atoms that are hard-core bosons, suggesting that at sufficiently low temperatures one could have "non-classical rotational inertia" - not exactly a supersolid, but similar in spirit; (2) a discussion of a liquid phase of (magnetic) vortices in superconductors in the context of heat transport; (3) an exposition of his take on high temperature superconductivity (the "hidden Fermi liquid"), where one can have non-Fermi-liquid scattering rates for longitudinal resistivity, yet Fermi liquid-like scattering rates for scattering in the Hall effect; and (4) a speculation about an alternative explanation (that, in my view, seems ill-conceived) for the accelerating expansion of the universe.   The document is vintage Anderson, and there's a melancholy subtext given that he's 94 years old and is clearly conscious that he likely won't be with us much longer.
  • On a lighter note, a paper (link goes to publicly accessible version) came out a couple of weeks ago explaining how yarn works - that is, how the frictional interactions between a zillion constituent short fibers lead to thread acting like a mechanically robust object.  Here is a nice write-up.