Thursday, September 20, 2018

What’s in a name? CMP

At a recent DCMP meeting, my colleague Erica Carlson raised an important point:  Condensed matter physics as a discipline is almost certainly hurt relative to other areas, and in the eye of the public, by having the least interesting, most obscure descriptive name.  Seemingly every other branch of physics has a name that either sounds cool, describes the discipline at a level immediately appreciated by the general public, or both.  Astrophysics is astro-physics, and just sounds badass.  Plasma physics is exciting because, come on, plasma.  Biophysics is clearly the physics relevant to biology.  High energy or particle physics are descriptive and have no shortage of public promotion.  Atomic physics has a certain retro-future vibe.

In contrast, condensed matter, while accurate, really does not conjure any imagery at all for the general public, or sound very interesting.  If the first thing you have to do after saying “condensed matter” is use two or three sentences to explain what that means, then the name has failed in one of its essential missions.

So, what would be better alternatives?  “Quantum matter” sounds cool, but doesn’t really explain much, and leaves out soft CM.  The physics of everything you can touch is interesting, but prosaic.  Suggestions in the comments, please!

Friday, September 14, 2018

Recently on the arxiv

While it's been a busy time, a couple of interesting papers caught my eye:

arxiv:1808.07865 - Yankowitz et al., Tuning superconductivity in twisted bilayer graphene
This lengthy paper, a collaboration between the groups of Andrea Young at UCSB and Cory Dean at Columbia, is (as far as I know) the first independent confirmation of the result from Pablo Jarillo-Herrero's group at MIT about superconductivity in twisted bilayer graphene.  The new paper also shows how tuning the interlayer coupling via in situ pressure (a capability of the Dean lab) affects the phase diagram.  Cool stuff.

arXiv:1809.04637 - Fatemi et al., Electrically Tunable Low Density Superconductivity in a Monolayer Topological Insulator
arxiv:1809.04691 - Sajadi et al., Gate-induced superconductivity in a monolayer topological insulator
While I haven't had a chance to read them in any depth, these two papers report superconductivity in gated monolayer WTe2, a remarkable material already shown to act as a 2D topological insulator (quantum spin Hall insulator). 

Seems like there is plenty of interesting physics that is going to keep turning up in these layered systems as material quality and device fabrication processes continue to improve.

Tuesday, September 04, 2018

Looking back at the Schön scandal

As I mentioned previously, I've realized in recent weeks that many current students out there may never have heard of Jan Hendrik Schön, and that seems wrong, a missed opportunity for a cautionary tale about responsible conduct of research.  It's also a story that gives a flavor of the time and touches on other issues still current today - faddishness and competitiveness in top-level science, the allure of glossy publications, etc.  It ended up being too long for a blog post, and it seemed inappropriate to drag out over many posts, so here is a link to a pdf.  Any errors are mine and are probably the result of middle-aged memory.  After all, this story did start twenty years ago.  I'm happy to make corrections if appropriate.  update 9/9/18 - corrected typos and added a couple of sentences to clarify things.