Search This Blog

Wednesday, August 28, 2019

ACS symposium - Chemistry in Real Space and Time

On Sunday I was fortunate enough to be able to speak at the first day of a week-long symposium at the American Chemical Society national meeting in San Diego, titled "Chemistry in Real Space and Time".  This symposium was organized by Ara Apkarian, Eric Potma, and Venkat Bommisetty, all from the UC Irvine NSF-supported center for Chemistry at the Space-Time Limit.  During its span as a center, CaSTL has been at the forefront of technique development, including integrating ultrafast optics-based time-resolved measurements with the atomic-scale precision of scanning tunneling microscopy.  The center is sun-setting, and the symposium is a bit of a valedictory celebration.

The start of our semester made it necessary for me to return to Houston, but a couple of highlights from the first day:

  • Pri Narang spoke about her group's efforts to do serious combined quantum electrodynamics calculations and microscopic nanostructure modeling.  If one wants to try to understand strong coupling problems between matter and light in nanostructures nonperturbatively, this is the direction things need to go.  An example.
  • Erik Nibbering talked about ultrafast proton transport - something I'd never thought about that depends critically on the positioning and alignment, say, of water molecules, so that hydrogens can swap their oxygen bonding partners.  His group uses a combination of photoacids (for optical control over when protons are released) and time-resolved infrared spectroscopy to follow what's going on.
  • Ji-Xin Cheng showed some impressive results of applying plasmon-enhanced stimulated Raman spectroscopy, basically tagging living systems with plasmonically active nanoparticles and performing pump-probe stimulated Raman to follow biological processes in living tissue. Very impressive hyperspectral imaging.  
  • My colleague Stephan Link showed some nice, clean results (related to these) in understanding chirality effects (trochoidal dichroism) in scattering of light by curved nanostructures, where the longitudinal component of the electric field (only happens at surfaces) is critically important.
  • Frank Hegmann and Tyler Cocker spoke about various aspects of THz-based STM.  I can't really do this justice in a brief blurb, but check out this paper and this paper for a flavor.  Similarly, Dominik Peller spoke about this paper and this paper, and Hidemi Shigekawa showed what you can do when you can achieve phase control over the THz light pulse.  Combining STM with femtosecond time resolution lets you see some impressive things.
  • While not STM, but none-the-less very cool, Yichao Zhang showed movies from the Flannigan group taken by time-resolved transmission electron microscopy, so that you can actually see the propagation of sound waves.  
Wish I could've stayed to see more - I felt like I was learning a lot.

Wednesday, August 21, 2019

Pairs in the cuprates at higher energies than superconductivity

I've been asked by student readers over the years about how scientists come up with research ideas.  Sometimes you make an unanticipated observation or discovery, and that can launch a research direction that proves fruitful.  One example of that is the work our group has done on photothermoelectric effects in plasmonic nanostructures - we started trying to understand laser-induced heating in some of our plasmonic devices, found that the thermoelectric response of comparatively simple metal nanostructures was surprisingly complicated, and that's led to some surprising (to us) insights and multiple papers including a couple in preparation.

In contrast, sometimes you have a specific physics experiment in mind for a long time, aimed at a long-standing problem or question, and getting there takes a while.  That's the case with our recent publication in Nature.

I've written a bit about high temperature superconductivity over the years (here, here, here, here).  For non-experts, it's hard to convey the long historical arc of the problem of high temperature superconductivity in the copper oxides.

Superconductivity was first discovered in 1911 in elemental mercury, after the liquefaction of helium made it possible to reach very low temperatures.  Over the years, many more superconductors were discovered, metallic elements and compounds.  Superconductivity is a remarkable state of matter and it took decades of study and contributions by many brilliant people before Bardeen, Cooper, and Schrieffer produced the BCS theory, which does a good job of explaining superconductivity in many systems.  Briefly and overly simplified, the idea is that the ordinary metallic state (a Fermi liquid) is often not stable.  In ordinary BCS, electrons interact with phonons, the quantized vibrations of the lattice - imagine an electron zipping along, and leaving behind in its wake a lattice vibration that creates a slight excess of positive ionic charge, so that a second electron feels some effective attraction to the first one.  Below some critical temperature \(T_{c}\), electrons of opposite spin and momenta pair up.   As they pair up, the paired electrons essentially condense into a single collective quantum state.  There is some energy gap \(\Delta\) and a phase angle \(\phi\) that together make up the "order parameter" that describes the superconducting state.  The gap is the energy cost to rip apart a pair; it's the existence of this gap, and the resulting suppression of scattering of individual carriers, that leads to zero electrical resistance.  The collective response of the condensed state leads to the expulsion of magnetic flux from the material (Meissner effect) and other remarkable properties of superconductors.  In a clean, homogeneous traditional superconductor, pairing of carriers and condensation into the superconducting state are basically coincident.

In 1986, Bednorz and Muller discovered a new family of materials, the copper oxide superconductors.  These materials are ceramics rather than traditional metals, and they show superconductivity often at much higher temperatures than what had been seen before.  The excitement of the discovery is hard to overstate, because it was a surprise and because the prospect of room temperature superconductivity loomed large.  Practically overnight, "high-Tc" became the hottest problem in condensed matter physics, with many competing teams jumping into action on the experimental side, and many theorists offering competing possible mechanisms.  Competition was fierce, and emotions ran high.  There are stories about authors deliberately mis-stating chemical formulas in submitted manuscripts and then correcting at the proof stage to avoid being scooped by referees.   The level of passion involved has been substantial.   Compared to the cozy, friendly confines of the ultralow temperature physics community of my grad days, the high Tc world did not have a reputation for being warm and inviting.

As I'd mentioned in the posts linked above, the cuprates are complicated.  They're based on chemically (by doping) adding charge to or removing charge from materials that are Mott insulators, in which electron-electron interactions are very important.  The cuprates have a very rich phase diagram with a lot going on as a function of temperature and doping.  Since the earliest days, one of the big mysteries in these materials is the pseudogap (and here), and also from the earliest days, it has been suggested (by people like Anderson) that there may be pairs of charge carriers even in the normal state - so-called "preformed pairs".  That is, perhaps pairing and global superconductivity have different associated energy and temperature scales, with pair-like correlations being more robust than the superconducting state.  An analogy:  Superconductivity requires partners to pair up and for the pairs to dance in synch with each other.  In conventional superconductors, the dancing starts as soon as the dancers pair up, while in the cuprates perhaps there are pairs, but they don't dance in synch.

Moreover, the normal state of the cuprates is the mysterious "strange metal".  Some argue that it's not even clear that there are well-defined quasiparticles in the strange metal - pushing the analogy too far, perhaps it doesn't make sense to even think about individual dancers at all, and instead the dance floor is more like a mosh pit, a strongly interacting blob.

I've been thinking for a long while about how one might test for this.  One natural approach is to look at shot noise (see here).  When charge comes in discrete amounts, this can lead to fluctuations in the current.  Imagine rain falling on your rooftop.  There is some average arrival rate of water, but the fluctuations about that average rate are larger if the rain comes down in big droplets than if the rain comes falls as a fine mist.  Mathematically, when charges of magnitude \(e\) arrive at some average rate via a Poisson process (the present charge doesn't know when the last one came or when the next one is coming, but there is just some average rate), the mean square current fluctuations per unit bandwidth are flat in frequency and are given by \(S_{I} = 2 e I\), where \(I\) is the average current.  For electrons tunneling from one metal to another, accounting for finite temperature, the expectation is \(S_{I} = 2 e I \coth (eV/(2 k_{\mathrm{B}}T) )\), which reduces to \(2 e I\) in the limit \(eV >> k_{\mathrm{B}}T\), and reduces (assuming an Ohmic system) to Johnson-Nyquist noise \(4 k_{\mathrm{B}}T/R\)  in the \(V \rightarrow 0\) limit, where \(R = V/I\).

TLDR:  Shot noise is a way to infer the magnitude of the effective charge of the carriers.

In our paper, we use tunnel junctions made from La2-xSrxCuO4 (LSCO), an archetypal cuprate superconductor (superconducting transition around 39 K for x near 0.15), with the tunneling barrier between the LSCO layers being 2 nm of the undoped, Mott-insulating parent compound, La2CuO4.   We could only do these measurements because of the fantastic material quality, the result of many years of effort by our collaborators.   We looked at shot noise in the tunneling from LSCO through LCO and into LSCO, over a broad temperature and voltage range.

The main result we found was that the noise in the tunneling current exceeded what you'd expect for just individual charges, both at temperatures well above the superconducting transition, and at bias voltages (energy scales) large compared to the superconducting gap energy scale.  This strongly suggests that some of the tunneling current involves the transport of two electrons at a time, rather than only individual charges.  (I'm trying to be very careful about wording this, because there are different processes whereby charges could move two at a time.)  While there have been experimental hints of pairing above Tc for a while, this result really seems to show that pairing happens at a higher energy scale than superconductivity.  Understanding how that relates to other observations people have made about the pseudogap and about other kinds of ordered states will be fun.   This work has been a great educational experience for me, and hopefully it opens the way to a lot of further progress, by us and others.

Friday, August 16, 2019

"Seeing" chemistry - another remarkable result

I have written before (here, here) about the IBM Zurich group that has used atomic force microscopy in ultrahigh vacuum to image molecules on surfaces with amazing resolution.  They've done it again.  Starting with an elaborate precursor molecule, the group has been able to use voltage pulses to strip off side groups, so that in the end they leave behind a ring of eighteen carbon atoms, each bound to its neighbor on either side.  The big question was, would it be better to think of this molecule as having double bonds between each carbon, or would it be energetically favorable to break that symmetry and have the bonds alternate between triple and single.  It turns out to be the latter, as the final image shows a nonagon with nine-fold rotational symmetry.  Here is a video where the scientists describe the work themselves (the video is non-embeddable for some reason).  Great stuff.

Sunday, August 11, 2019

APS Division of Condensed Matter Physics invited symposium nominations

While I've rotated out of my "member-at-large" spot on the APS DCMP executive committee, I still want to pass this on.  Having helped evaluate invited symposium proposals for the last three years, I can tell you that the March Meeting benefits greatly when there is a rich palette.

---

The DCMP invited speaker program at March Meeting 2020 is dependent on the invited sessions that are nominated by DCMP members. All invited speakers that we host must be nominated in advance by a DCMP member.

The deadline to submit a nomination is coming up soon: August 23, 2019.

Please take a moment to submit an invited session nomination.

Notes regarding nominations:
  • All nominations must be submitted through ScholarOne by August 23, 2019.
  • In ScholarOne, an invited session should be submitted as an "Invited Symposium Nomination".
  • An invited session consists of 5 speakers. You may include up to 2 alternate speakers in your nomination, in the event that one of the original 5 does not work out.
  • While no invited speakers will be guaranteed placement in the program until after all nominations have been reviewed, please get a tentative confirmation of interest from your nominated speakers. There will be a place in the nomination to indicate this.
  • A person cannot give technical invited talks in two consecutive years. A list of people that gave technical invited talks in 2019, and are therefore ineligible for 2020, can be found on this page.
  • Nominations of women, members of underrepresented minority groups, and scientists from outside the United States are especially encouraged. 
Be sure to select a DCMP Category in your nomination. DCMP categories are:
07.0 TOPOLOGICAL MATERIALS (DCMP)
09.0 SUPERCONDUCTIVITY (DCMP)
11.0 STRONGLY CORRELATED SYSTEMS, INCLUDING QUANTUM FLUIDS AND SOLIDS (DCMP)
12.0 COMPLEX STRUCTURED MATERIALS, INCLUDING GRAPHENE (DCMP)
13.0 SUPERLATTICES, NANOSTRUCTURES, AND OTHER ARTIFICIALLY STRUCTURED MATERIALS (DCMP)
14.0 SURFACES, INTERFACES, AND THIN FILMS (DCMP)
15.0 METALS AND METALLIC ALLOYS (DCMP)

Thank you for your prompt attention to this matter.

Daniel Arovas, DCMP Chair, and Eva Andrei, DCMP Chair-Elect