Sunday, July 14, 2024

Brief items - light-driven diamagnetism, nuclear recoil, spin transport in VO2

Real life continues to make itself felt in various ways this summer (and that's not even an allusion to political madness), but here are three papers (two from others and a self-indulgent plug for our work) you might find interesting.

  • There has been a lot of work in recent years particularly by the group of Andrea Cavalleri, in which they use infrared light to pump particular vibrational modes in copper oxide superconductors (and other materials) (e.g. here).  There are long-standing correlations between the critical temperature for superconductivity, \(T_{c}\), and certain bond angles in the cuprates.  Broadly speaking, using time-resolved spectroscopy, measurements of the optical conductivity in these pumped systems show superconductor-like forms as a function of energy even well above the equilibrium \(T_{c}\), making it tempting to argue that the driven systems are showing nonequilibrium superconductivity.  At the same time, there has been a lot of interest in looking for other signatures, such as signs of the ways uperconductors expel magnetic flux through the famous Meissner effect.  In this recent result (arXiv here, Nature here), magneto-optic measurements in this same driven regime show signs of field build-up around the perimeter of the driven cuprate material in a magnetic field, as would be expected from Meissner-like flux expulsion.  I haven't had time to read this in detail, but it looks quite exciting.  
  • Optical trapping of nanoparticles is a very useful tool, and with modern techniques it is possible to measure the position and response of individual trapped particles to high precision (see here and here).  In this recent paper, the group of David Moore at Yale has been able to observe the recoil of such a particle due to the decay of a single atomic nucleus (which spits out an energetic alpha particle).  As an experimentalist, I find this extremely impressive, in that they are measuring the kick given to a nanoparticle a trillion times more massive than the ejected helium nucleus.  
  • From our group, we have published a lengthy study (arXiv here, Phys Rev B here) of local/longitudinal spin Seebeck response in VO2, a material with an insulating state that is thought to be magnetically inert.  This corroborates our earlier work, discussed here.  In brief, in ideal low-T VO2, the vanadium atoms are paired up into dimers, and the expectation is that the unpaired 3d electrons on those atoms form singlets with zero net angular momentum.  The resulting material would then not be magnetically interesting (though it could support triplet excitations called triplons).  Surprisingly, at low temperatures we find a robust spin Seebeck response, comparable to what is observed in ordered insulating magnets like yttrium iron garnet.  It seems to have the wrong sign to be from triplons, and it doesn't seem possible to explain the details using a purely interfacial model.  I think this is intriguing, and I hope other people take notice.
Hoping for more time to write as the summer progresses.  Suggestions for topics are always welcome, though I may not be able to get to everything.

1 comment:

  1. I’ve already mentioned the thermodynamics of information and computation as a potential topic previously.

    Another good one would be applications of condensed matter physics to medical imaging. MRI wouldn’t be possible without superconductors. Ultrasound depends crucially on piezoelectricity. Making radiation detectors work properly requires a deep understanding of charge carrier transport in semiconductors.

    ReplyDelete